Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Sci Rep ; 12(1): 10874, 2022 06 27.
Article in English | MEDLINE | ID: covidwho-1908286

ABSTRACT

A variety of medical procedures are classified as aerosol generating. However there is no consensus on whether some procedures such as nasopharyngeal swabbing can generate aerosols. During specimen collection, the contact of the nasopharyngeal swab with the respiratory mucosa often triggers defense reflexes such as sneezing and coughing, which generate airborne particles. The accumulation and persistence of a viral load from infectious aerosols for hours after their generation can represent a threat for increased spread of infection. Prospective observational cohort study in individuals tested for RT-PCR SARS-CoV-2 from July to October 2020. Participants were evaluated for the prevalence of aerosol generating events (AGEs) triggered by the nasopharyngeal swabbing. We used descriptive statistics to analyze the data set and the chi-square test for AGE comparison between sexes. Among 1239 individuals, we reported 264 in which AGEs were triggered by the specimen collection. 97 individuals tested positive for SARS-CoV-2, of which 20 presented AGEs. There were no significant differences in the occurrence of AGEs by age, but significant differences have been identified between sex and the occurrence of AGEs both in the SARS-CoV-2 negative and SARS-CoV-2 positive individuals. The prevalence of coughing or sneezing triggered by the nasopharyngeal swabbing was high among tested individuals. Testing facilities should ensure adequate availability of personal protective equipment (PPE) for the testing personnel, ensure appropriate ventilation of the rooms, and develop additional strategies to limit the risk of contamination of other participants to the testing session from potentially infectious and persistent aerosols.


Subject(s)
COVID-19 , Pandemics , Aerosols , COVID-19/diagnosis , COVID-19/epidemiology , Cough/etiology , Humans , Nasopharynx , Prospective Studies , SARS-CoV-2 , Sneezing
2.
J Cell Mol Med ; 25(1): 591-595, 2021 01.
Article in English | MEDLINE | ID: covidwho-934013

ABSTRACT

COVID-19 can present with a variety of clinical features, ranging from asymptomatic or mild respiratory symptoms to fulminant acute respiratory distress syndrome (ARDS) depending on the host's immune responses and the extent of the associated pathologies. This implies that several measures need to be taken to limit severely impairing symptoms caused by viral-induced pathology in vital organs. Opioids are most exploited for their analgesic effects but their usage in the palliation of dyspnoea, immunomodulation and lysosomotropism may represent potential usages of opioids in COVID-19. Here, we describe the mechanisms involved in each of these potential usages, highlighting the benefits of using opioids in the treatment of ARDS from SARS-CoV-2 infection.


Subject(s)
Analgesics, Opioid/therapeutic use , COVID-19 Drug Treatment , COVID-19/etiology , Respiratory Distress Syndrome/drug therapy , Analgesics, Opioid/administration & dosage , COVID-19/complications , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/virology , Dyspnea/drug therapy , Dyspnea/etiology , Humans , Immunomodulation/drug effects , Immunomodulation/physiology , Lysosomes/drug effects , Receptors, Opioid/immunology
3.
Eur J Pharmacol ; 891: 173694, 2021 Jan 15.
Article in English | MEDLINE | ID: covidwho-893746

ABSTRACT

In the context of the current SARS-CoV-2 pandemic, associations of drugs which interfere with specific steps of the viral infectious cycle are currently being exploited as therapeutic strategies since a specific treatment by vaccination is still unavailable. A widespread association of repurposed agents is the combination of the antimalarial drug Hydroxychloroquine and the macrolide antibiotic Azithromycin in the setting of clinical trials. But a closer analysis of their mechanism of action suggests that their concomitant administration may be impractical, and this is supported by experimental data with other agents of the same classes. However a sequential administration of the lysosomotropic antimalarial with the addition of the macrolide proton pump inhibitor after the first has reached a certain threshold could better exploit their antiviral potential.


Subject(s)
Azithromycin/pharmacology , COVID-19 Drug Treatment , COVID-19 , Drug Repositioning , Hydroxychloroquine/pharmacology , SARS-CoV-2 , Anti-Bacterial Agents/pharmacology , Antimalarials/pharmacology , COVID-19/virology , Drug Interactions/physiology , Drug Repositioning/methods , Drug Repositioning/trends , Humans , SARS-CoV-2/drug effects , SARS-CoV-2/physiology
SELECTION OF CITATIONS
SEARCH DETAIL